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CHAPTER 1

INTRODUCTION

Maintainability (M), as an engineering discipline, is
progressing through its infancy and is now gathering sophistication
and momentum. This growth can be seen in the increasing number of
published articles introducing new methods, new applications of old
methods, and new concepts slanted toward the field of maintainability,
This paper can be placed in the second category. It is an old
concept, applied in a different way to obtain the desired results.

The desired result in this case is the analysis of downtime
data by fitting a distribution to the data. The old method is the
familiar gamma distribution which has, in recent years, been the
subject of lively conversations as a possible distribution of
downtimes. It has been pointed out by many authors, Peterson (14)*,
in particular, that the gamma distribution can assume a variety of
different shapes. This is verified by Figure 1., In particular, notu.
tl at when the shape parameter is equal to 1, the distribution is a.

exponential, Although the shape parameter is not restricted te an

iRt ol

integer value, an Erlang distribution (1) results when it is. As

the Erlang distribution has been used in queueing theory, ome

further attributes of the gamma distribution may be for. there.
Peterson (14), in his paper, discusses the fittir; of a gammu

distribution to empirical data generated bv a computcr. Although

he discusses the attributes of the gamma distribution in the analysis

* Numbers in parentheses refer to the material listed in the
References at the end of this paper.,
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of downtime to quitec an extent, his method of parameter estimation

leaves much to be desired statistically. This method consisted of
plotting the empirical data and then "overlaying'" this plot with
plots of the gamma distribution with integer shape parameters. The
gamma distribution which fitted best by this ovecrlaying process was
then used to solve for t'. scale parameter. The threshold parameter
was assumed to be zero in all cases., Although the results were
biased by this method, he does give an actual application of the
gamma distribution fitted to downtime data.

The gamma distribution 1is attractive for two main reasons.
The first is that the log-normal distribution, which is usually
assumed to be the distribution of downtimes, is quite unwieldy and
requires plotting on log-normal paper to ascertain that the data is
actually log-normally distributed., The second reason is that many of
tti tools and methods being brought into use today .ometimes require
the manipulation of distributions in complex ways. For example,
Pieruschka (15) develops the force of nortality of equipment with
ideal repair and shows that a steady state value is obtained as the
number of failures increase. He uses laplace transforms to obtain
the convolution of a gamma distribution with integer shape parameters
and then intcgrates the resulting distribution to find the mean,

These are the reasons whv it is desirable to prove that the gamma

At e,

distribution will represent the anticipated data, and still be
mathematicallv simple,
Two downtime distributions can be spoken of in equipment analysis.

The first is the distribution of elapsed time required to complete




a specific maintenance task. The second concerns the distribution
of times required to complete different tasks within a given system,
and this distribution is said to describe the system downtime. The
random variable i{n the second c.se is, of course, composed of elements
of both cases, but the randomness of the individual task times is
usually neglected. This time element approach to the analysis of
downtimes will not be used hcre; but, instead, we will only be
interested in fitting a function to a number of data points,

The function to be fitted is the gamma distribution and para-
meter estimation is by maximum likelihood where certain terms of the

maximum likelihood equations have been tabulated., These tables are

entered with a parameter formed by the ratio of the arithmetic mean
to the logrithmic mean and the shape parameter term is read out,
Several more simple calculations will yield the threshold parameter
and the scale parameter. I

In cbtaining probability levels, the gamma distribution has one
of the disadvantages of the lcg-normal distribution in that tables
must be consulted (8,13, 411 of the moments of the gamma distribu-
ticr are tunctions of .+ ‘.rce Larimeters, and possiblv most

impertant, a gamme distrlibution cenvol-cd with itself, results in

another gamma distribution,
To prove that the gamma distribution could be fitted to downtime
Jata, a computer program was written to perform the estimation pro-
Yol soigme i - cemploieiy specified density functions
weeo. 2. empfvical o we o funtst werh 1 zamma distribution. 'When

tested by the Kolmogoruv-.wrrnoff goodness of fit test (11), tnere

o it Ao ‘_J




was no significant difference between any of the sets of data and its
corresponding gamma distribution approximation at the .05 level,

A brief literature survey will be given in Chapter II, with the
ensuing chapter devoted to the development and use of the gamma
distribution and the estimation procedure. The convolution of the
gamma distribution as pertains to downtime data is developed, and
several examples will be given in Chapter IV, Some possible extensions

of and conclusions to the paper will then be discussed in Chapter V.

i
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CHAPTER II

LITERATURE REVIEW

Much of the impetus for this paper resulted from Peterson's
paper (14) which was a rough approximation of downtime data by the
gamma distribution. 1Imitially, work was started on the so-called
generalized gamma distribution developed by Stacy (16) of the IBM
Corporation and at times worked on by Stacy and Mihram (17), Harter
(7}, Harter and Moore (6), Parr and Webster (12), and Collins (3).
The fourth paramerer is a power of the exponential term in the three
parameter gamma distribution. Although Stacy and Mihram and Collins
have developed two different parameter estimation procedures, the
methods are unwieldy and time consuming. The convolution of the
generalized gamma distribution is given as a summation term. In
attempting to fit the four parameter gamma distribution to data, it
was soon realized that the advantage of a wider variety of possible
shapes was nct werth the add.ticral complexity.

Although the method «f woments in parameter estimation for the
gamma J1:frilvic.en 10 ot -t the preater confidence obtained
by maxicwe ket o g o G1iv woriioes bel Several tables for
cxlving the maximum likelihood quations are available, Among these
1re Chapman (2), Masuvama and Kuraiwa (1951), and Greenwood and

turand (35), the last being used in this paper, General discussions

b v tfsteihuticss are contained in most statistics and relia-
cia b 0 gy develoned the garma distribution
Cquse an catent dn o tedhlaeisity anaivsias, and develops the




mortality and hazard rates of the distribution., Probability tables
for the Incomplete Gamma Fur.ction have been computed by Pearson (13)
and Harter (8). Some of these discussions are presented in the next

chapter in a general discussion of the gamma distribution,




CHAPTER ITI
THE GAMMA DISTRIBUTION

In this chapter, the gamma distribution will be investigated.
The moments and the moment generating function along with the
convolution of the amma distribution will be given and the method
of parameter estimation will be developed.

The gamma density function is given by

ey
£(t) = a1~
] a '(b)

L

otherwise

where ¢ is the threshold valuc,
a is the scale parameter,
b is the shapce paramctor, and
*(n) is the gamma func:tior with argument n (Table 2).
The curmulative distribution is

Feegd = e (eeoeg) = 0 (u,n)

where T owu.n) is the Inc-mplete Gamma Fanction Katio and in Harter's

notation 3

[ L DU DU PUPRI: Toruand teoo




mortality and hazard rates of the distribution. Probability tables
for the Incomplete Gamma Function have becn computed by Pearson (13)

and Harter (8). Some of these discugssions are preser ed in the next

chapter in a general discussion of the gamma distribution.




In gencral the kth moment about the threshold parameter is

k-1
k 7 (b + j).
j=0

_af b+ k) -a
“(b)

Yk
A point that will be used later should be noted here, and that is
that a number of different combinations of scale parameter and shape
parameter will yield approximately the same distribution., This can
be seen from the equations for the mean and variance in which there
are three unknowns. An illustration of this point is shown in

Figure 2 where the respective parameters of the curves are

Curve # c a b Mean Variance
1 .2 .65 4,15 2.5 1.75
2 0 .707 3,817 2.5 1.76
3 o .89 2,36 2.5 1.87

Parameter Estimation by Maximum Likelihood

In the development of the maximum likelihood cquations for
parameter estimation (5), we form the joint probabilityv of drawing

n samples, t1, to. tgeee. ty trom a yparma distribaution with parameters

<

¢, a, and b,

t l‘(‘ t 4=
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-C b1 n ti"C
(ti-C) - e L

Y]
n =29

(tn—c) e 1
S " {re]”

Taking the logarithm yields

. n Ny
X=1InL = (b-1) ¥ 1n(t -c) - &= L5 _bnilna-nT(b).

i=1 i=1 4
Differentiating with respect to the parameters to maximize the A

probability of obtaining the given sample results in

n
2L - $i7¢ _mb
@ 4=1 a” d 5
Tty - C
ab = ———ﬁ——~—- Equation 1
:
n -
L= In(t, ~c) ~nlna-ntB=p,
b i=1 ' ‘b)
Substituting the value found for a in equation 1, one obtains ’
n
ny C o tsec . 1In (t;-c)
Inb - M) g, CGi"9 _ i=1 Equation 2
7 (b) n n

where I (b) is the first derivative of the gamma function with respect

to b, Taking the partial with respect to the thresiold paramneter gives

e by —Ll_+_=0 ’

n
a (b-1) - 1 - Equation 3
=1 % - €

In equation 1 the product ab is scen to be the arithmetic mean




corrected for the threshold value. In equation 2,[fr‘(b)J + [r‘(blj

is the tabulated digamma function (4), and equation 2 may be solved
usirg a cet of these tables and natural logarithms, However, the
entire left-hand side of equation 2 has been tabulated in several
different ways (2,5).

This then will be the method used to estimate the parameters.
The right-hand side of equation 2 is simply the logarithm of the
arithmetic mean minus the logarithm of the geometric mean, If we
denote this right-hand side #s Y and the left-hand side as n(b), then

n(b) =Y.

Greenwood and Durand (5) have tabulated bnp(b) = b[ln b - 17(b)/
I'(b)] versus n(b) = Y to eight decimal places and their table is
reproduced as Table 1,

The procedure will be to calculate the arithmetic and geometric
means of the data and set Y equal to the difference of the logarithms
of these two means. Enter Table 1 with this value and read bn(b) = Yb,
Then solve for b = Yb/Y.

The scale parameter a is found from equation 1 and is equal to
the arithmetic mean divi“-d by b, Egquation 3 indicates that some
iteration process rmust be used to solve for the threshold value,
Since this value must be found before the means can be calculated, a
amethod of estimation which is free of Lerms containing a and b must
Le found, The following estimate was developed by fitting a straight
“fae to the first three paicts on the curve generated by the expected

ianks of the various ordered sample points. (Appendix 3 shows the

development of this cquation), The resulting expression {is
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YZ + Yl _ (Y3 - Yl) (Y3 - YZ)
2 2(2Y2 - Yl - Y3)

c -

where Yy, Yy, and Y4 are the first th-ee ordered sample points.

Perhaps the most valuable asset of the gamma distribution is the
ability to convolve one gamma distribution with another. The easiest
proof of this is to derive the momen: generating function and then
find the distribution of the sum of random variables by multiplying
their respective moment gecnerating functions together, For the gamma

distribution, the moment generating function is

- 1 -t 8t
") =ftb" e ae
ab ra)

- .

b
(1 - a% 1 - a

%

Thus, a gamma distribution convolved witt itself will result in

a gamma distribution with threshold parameter 2c, scale parameter a, and

shape parameter 2b, 1In general, when n gamma distributions are con-

volved together, if they have a common scale parameter, a gamma distri-
n
butica rrsults vith threshold parameter = [ ¢
n i=1
and shape parameter = [ b;. The restriction of equal scale para-
i=1
meters for the distributions being convolved will not be too great of

i scale parametcr a,

an {mpairment in the treatment of downtimes since each sct of data

will have approximately the same range. Recalling that a set of data




can be represented by a variety of scale and shape parameter combina-
tions, it !s seen that sets of data with unequal scale parameters can
be convolved by preassigning a common scale parameter to each. The
shape parameter for each set of data would then be found by dividing
tte individual arithmetic means by the common scale parameter, This
concept will be discussed in the following chapter in the form of an

example.




CHAPTER IV

EXAMPLES

The first example in this chapter shows the steps necessary to
fit a gamma distribution to a set of data, Tue second example will
illustrate the method of convolving several sets of data with unequal
scale parameters.

1. The 10llowing times were taken in a maintenance test on a
particular system. We wish to perform an analysis on the data and
fit a distribution to it so that we may speak of the probability of

completing a future action or actions within a certain time.

1.7 4.6 2.3 3.0
4.0 3.4 1.3 3.7
3.3 2.9 3.8 2.2
2.6 2.0 2.7 4.3
3.5 2.5 3.1 ”

The first step in the analysis is to find the first three ordered

points. They are Yy = 1.3, Yy = 1.7, Y5 = 2.0, then

e o L741.7 _ (2.0 -1.3) (2.0 - 1.7)_ {
2 2((2) (1.7) - 1.3 - 2.0]
= 1,5 - 221 = 1,5 - 1,05 = .45

N

The arithmetic mean is found to be

ti. - C 48.35
n 19

% |
1]
il

2.542,




the geometric mean is

n ,
I 1ln (t3 - ¢)
antiln| 1=l = antiln | 16:444 }_ 2,372,
n 19
then Y = In|[2:242 ) - 0694
12,372

Entering Table 1 we find that for

Y = ,069%, Yb = ,>5113.
Then
b = 223 -7.37,
.0694
a.—.-5-=_2_-_5ﬁ=,3a5,
b 7.37

6 37 -( t - 045
37 T\ s
.58

and f(x) = (t - .45)

Entering the incomplete gamma function tables of Harter, where

p=b-1=6.37 =6,5

d
an u=Ltoc -t - .45
avb .935

we can ascertain the cumulative probability for any given time and
plot the graph of Figure 3., Also plotted on the graph is the curve
from which the original data points were drawn, which in this case
was a normal distribution with a mean of 3.0 and variance of 1.0,

Pecrforming the HKolmogorov-Smirnoff goodness of fit test (11)

Pyax . MAKL Foeo - F(t) = .06 - .301

GAMMA NORMAL

where ,301 is the critical valae,
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Therefore there is no significant difference at the .05 level of

significance.

2. A gecond example will demonstrate the convolution of a number of

sets of data. The data is as follows:

System 1:
3.13 1.96 3.84 2.33
2,48 3.00 1,36 3.38
4,64 4,04 2.62 1,72
2.87 2.16 3.67 6,28
3.52 3.25 2,75

System 2:
4,57 4.04 5.76 6.87
5.59 3.81 4,71 5.43
3.54 5.00 5.29 4.24 j
6.19 6.466 3.13 5.96
4.85 5.15 4,41

System 3:
3.11 1.42 1.67 2,22 |
2.45 2.11 ' .58 .89
1.89 1.78 2,58 2.90
3.42 2.73 2,00 1.55
1.27 2.33 1.10

System 4:
7.61 5.16 4.39 5.52
5.35 6.00 7.50 6.48
4.50 7.06 6.16 5.68
6.65 5.84 8.07 6.32
.93 “. e n 84



Fitting the gamma distribution to the four systems as in the first

example, the various parameters are found to be,

System c a b Mean Variance
1 .94 .46 4.5 3.0 .95 1
2 2,68 .54 4.3 5.0 1.26 |
3 2,03 .34 11.7 6.0 1.35
4 .19 .39 4,7 2.0 .715
4
Setting A = E:%—ﬁi = 43,

the bi's are then

vl
by = == = 4,80,
1 A *
02
by = ££ = 5,45,
27 A
ba = 23 = 9,24, and
3= T 0t
A
b, = 2= = 4,21.
4 A *

Then the distribution of the convolved svstems is a gamma distribution

4

with threshold parameter C = = c; = 5.84, scale parameter A = .43,
A i=1

and shape parameter B = © by = 23.7. This distribution has been

i=1
plotted in Figure 4 along with the convolution of the four daca

senerating distributions which were all pnarmal with means of 3, 5, 6 and

2 and variances of 1, 1.3, 1.6 and 7.5.

Note in particular the parameters of the total distribution
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Method Mean Variance tgse tggy

Conivolved 16 4.4 19.74 21.59
Camma

Convolved 16 4,65 19.56 21,03
Normal

The Kolmogorov-Smirnoff goodness of fit was again applied with

4 x 19 = 76 degrees of freedom,

found at the .0, level,

No significant difference could be
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CHAPTER V
CONCLUSIONS

Although the gamma distribution approximations found by the
author fitted extremely well, it is recommended that someone using
the method go slowly and check the initial results before proceeding.
This method will have important ramifications in the design of new
systems since the designer will know beforehand that the downtimes will
follow a gamma distribution of some sort, He can, therefore, feel free
to use the modcls necessary for proper design of a logistical system
without making a poorly based assumption as to the distribution of the
downtimes. Also, with the many time critical repair action situations
that occur in the space industry, a planning engincer can use the
accurate probability models without ¢mploying an inaccurate repair
time distribution,

The convolution tecinique developed for uncqual scale parameters
nceds more validation than the single example presented. However, the
potential of such a technique demands that it be investigated further,

For those who would still argue the validitv of the log-~normal
distribution in maintainabilityv work, Figure 4 has been provided. It
is a gamma distribution fitted to a log-normal distribution with a
mean of .7h and variance of 604,

In the estimation procedure, a and b were fixed by the data as
soon as the threshold parameter was found, and varving ¢ will vary
“he fit., The equation for ¢ on page 13 is certainly not the best

estimate., A possible alternative would be to plot the first few
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sample points versus their expected, or median, ranks and approximating
the threshold parameter by eye. This would certainly lend self-assurance
to the estimate.

Although the process can be hand operated, computer programs have
been written for both the data fitting process, and for the convolution
technique and are presented with the expected output in Appendices 1
and 2.

Greenwood and Durand (5) have also developed the formulas for the
variances of a and b, Since we violated one of their original premises
by estimating c¢ from the data, these formulas will not be presented
in order to avoid temptation of the reader.

Further areas of research in the line of using the gamma distribu-
tion for representing repair times wculd be to improve the estimate of the
threshold parameter in order to obtain a better fit, Perhaps this should
be developed for a better fit in the upper half or perhaps only the upper
tail. The convolution technique has assumed equal weight for all of the h

systems, this could most certainly not be the case. Further research

could be done on weighting the different sets of data by their frequency
with respect to the overall system, Interesting possibilities also lie
in the previous research done on the FErlang distribution (1) which is a
special case of the gamma distribution. Perhaps some of the theories
which have been developed in queueinpg theory about the Erlang distribu-
tion would be uscful in maintenance queuecing analysis,

1t is hoped bv the author that further research on the gamma distri-
bution will be done and that the gamma distribution will be used more

frequentlv in downtime analvsis., Since the pamma distribution is quite

| | | y




simple in form, especially when the shape parameter is an integer, it

is easy to become familiar with the distribution and gain an insight
into the data it represents. It is hoped that this paper will help

make the gamma distribution za avaiiable tool of the Maintainability

engineer,
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APPENDIX 1

Computer Program for Fitting a Gamma
Distribution to a Set of Data

This appendix contains the flowchart, the program, and the
expected output of a program which fits a gamma distribution to n
data points. In addition, the input formats are given on standard
forms. The process is as in the main portion of this paper with the
following exceptions.

1. In lieu of Table 1, the following equations (5) were used to

solve for b.

o
|

= y~1(.5000876 + ,1648852y - .0544274y2)

For 0 <y - ,5772

b = 8-898919 + 9,059950y + ,9775373y2
y(17.79728 + 11.968477y + y2)

For ,5772 «y -17.0

2, The geometric mean was calculated by
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FLOWCHART

Read the Number of Sample Points

Read the Sample Values

H xi 1'0

Find the Threshold Parameter c¢

DO I

1, N

zi=xi—c

e T T

mezg = (n Zi) (Zi)
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X, = (n 21)1/N

Y=1n (x) - In (xg)

a2

Find Scale Parameter B l Find Scale Parameter B

L_ il

Scale Parameter a =

(Find I'(b)
i&{ DOT =1, N ! !

Find the Density Function
at FEach Sample Point

X
b

Write the Sample Number and
the Density at that Point

7




®

Write the Values of the
Threshold, Scale and Shape Parameters
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(@}

aO0O0On0n

100

30

40
200

10
20

DIMENSION X(1060),Z(100)

READ(5,10) N

READ(5,20) (X(M), M=1,N)

THERE ARE N SAMPLE rOINTS X(1),X(2),...X(N)

SXBAR = 0.0
SXDOT = 1.0
AN = N

C=(X(2)4X(1))/2.0-(X(3)-X(1))*(X(3)-X(2))/ (4.*X(2)-2,
1 *¥(1)-2.*X(3))

C IS THE THRESHOLD PARAMETER

DO 100 L = 1, N

Z(L) = X(L)-C

SXBAR - SXBAR + Z(L)

SXDOT = SXDOT * Z(L)**(1.0/AN)

CONTINUE

XBAR = SXBAR/AN

Y = ALOG (XBAR/SXDOT)

XBAR IS THE ARITHMETIC MEAN, SXDOT THE GEOMETRIC MEAN
IF(Y-.5772) 1,1,2

B = (,5000876+.1648852%Y- ,0544274%Y*Y) /Y

GO TO 3

B = (8.89891949,05995%Y+,8775373%Y*Y)/(¥Y*(17.79728
1+ 11.968477 * Y + Y*Y))

B IS THE SHAPE PARAMETER

A = XBAR/B

A IS THE SCALE PARAMETER

VALUE OF THE DENSITY FUNCTION AT EACH SAMPLE POINT.
THE NEXT SIXTEEN CARDS ARE OPTIONAL AND WRITE Ti®
THE FIRST SEVEN CARDS FIND GAMMAYB)

WRITE (6,30)

FORMAT (1H1, 14X, 'SAMPLE ', 8X, 'SAMPLE', 13X, '"DENSITY'/
1 14X, 'NUMBER',9X, 'POINT'//)

AMUL = 1,0

BG=B

IF(BG - 2.0) 4,4,5

BG = BG - 1,0

AMUL = AMUL * BG

GO TO 7

Q = BG - 1.0
GAMB=AMUL*(1.-.57710166%*%Q+,98585399*Q**2,-,87642128%Q
1 #%3,+,.8328212%Q% "4, =, 5684729%Q%*5 +, 2548204 9%Q%%6 , -
2 .0514993%Q>*7,)

DO 200 K = 1,N

FX = ((Z(K)/A)Y**(B=1,)*EXP/(-1,)*Z(K)/A))/ (A*GAMB)
WRITE(6,40) K, X(K), FX

FORMAT (15X,13,10X,F6,2,5X,F16.7)

CONTINUE

WRITE(6,50) C, A, B

FORMAT(1D

FORMAT (12F6.,2)




50 FORMAT(1HO,'THE DATA IS GAMMA DISTRIBUTED WITH ',
1'THRESHOLD PARAMETER = ' F7.4//40X,'SCALE PARAMETER = '
2 ,F8.,4//36X,'AND SHAPE PARAMETER = ',F8.4)
STOP
END
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CHAPTER III
THE GAMMA DISTRIBUTION

In this chapter, the gamma distribution will be investigated.
The moments and the moment generating function along with the
convolution of the gamma distribution will be given and the method
of parameter estimation will be developed.

The gamma density function is given by

h _ sﬁb_l _ t-c
[F) e =

a T'(b)

cC <t <&

otherwise

where ¢ is the threshold value,

a is the scale parameter,

b is the shape parameter, and
“(n) is the gamma function with argument n (Table 2).
The cummulative distribution is

Flg b = Pro (e 7t ) = I (u,n)

where 7 «u. ™) is the Incowplete Gamma Function Ratio and in Harter's

notation (%)

tg - ¢
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APPENDIX 2

Computer Program for Convolving

Several Sets of Data

This program utilizes the previous program in a do loop to fit
gamma distributions to several sets of data. The average scale para-
meter is found and each set of data is forced to havc this common

scale parameter. The distributions are convolved with the threshold

k k
parameter being I cj;, scale parameter = I a; and shape parameter =
i=1 i=1
k
k
L by where there are k sets of data.
i=1

o anud i




FLOWCHART

Read the Number of Subsystems, K

I }:Ci=0
’ Tai-':O
| sbi=0

Read the Number of Sample
Points in the Subsystem

Read the Sample Values
for the Subsystem

Fit a Camma Distribution
as in Program 1

—




avg K

DOI =1, K

Lby =1Iby+by

Write the Values of the
Threshold, Scale and Shape Parameters

40
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DIMENSION X(100)
READ(5,10) K

C THERE ARE K SUB-SYSTEMS BEING ANALYZED
SUMC = 0.0 3
SUMA = 0.0
SUMB = 0.0

c THE DO 800 LOOP FITS A GAMMA DISTRIBUTION TO EACH SET

C OF DATA.
DO 800 I = 1,K
READ(5,10) N
READ(5,20) (X(M), M=1,N)
C THERE ARE N SAMPLE POINTS X(1),X(2),...X(N)
SXBAR = 0.0
SXDOT = 1.0
AN = N
C=(X(2)HX(1))/2.0-(X(3)-X()I*)IX(3)=X(2))/ (4. *%X(2)
1 - 2,%X(1) - 2,%¥X(3))
c C IS THE THRESHCLD PARAMETER
DO 100 L. = 1, N
Z(L) = X(L)-C
SXBAR = SXBAR + Z(L)
SXDOT = SXDOT * Z(L)**(1,0/AN)
100 "NNT INUE 1
XBAT = SXBAR/AN
XB(I) = XBAR
Y = ALOG(XBAR/SXDOT) _ ]
c XBAR 1S THE ARITHMETIC MEAN, SXDOT THE GEOMETRIC MEAN
IF(Y=,5772) 1,1,2
1 B = (.5000876+,1648852%Y-,0544274%Y%*Y) /Y
GO TO 3
2 B = (8.898919+9,05995%Y+,9775373%Y*Y)/ (Y*(17.79728 !
1 + 11.968477 * ¥ + Y*Y))

C B IS THE SHAPE PARAMETER
3 A = XBAR/R
C A IS THE SCALE PARAMETER

SUMA = SIMA + A
SUMC = SUMC + C
THIS WRITFE STATEMENT [S OPTIONAL, AND PRINTS THE
C PARAMITERS OF EACH SUB-SYSTEM.
WRITE(6,30) 1, C, A, B
30 FORMAT (110, 'SUB-SYSTEM', 13, "HAS BEEN FITTED WITH A%,
1' GAMMA DISTRIBITION AND'//' C ='F8,4,' , A ='F8,4,
2' AND B = ' F8.4)
800  CONTINUE
AK = K
AAVG = STMA/AK
DO 900 I, = 1.K
SIMB = SUMB + XB(L)/AAVG
900  CONTINUE
WRITE(6,40) K, SUMC, AAVG, SUMB
10 FORMAT(13)

@]

4
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20  FORMAT (12F6, 2)
40  FORMAT(1HO,I3,' SUBSYSTEMS HAVE BEEN FITTED WITH GAMMA'
1,' DISTRIBUTIONS AND THEIR CONVOLUTION 1S'//' A GAMMA' i
2,' DISTRIBUTION WITH C = "sF8.4," A =" F8.4,' AND B ='
3F8.4)
SToP
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SAMPIE VALUES, X (1) o
FORMAT (12F6.2) _ 1. 36 e J

SAMPLE VALUES

W
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APPENDIX 3

Derivation of the Equation

for the Threshold Parameter

As indicated in Chapter 11T, the maximum likelihood equation for
the threshold parameter requires an iteration process. As this para-
meter is rarely known in maintainability analysis. some estimate of
this parameter must be made from the data availahle. Since the area
between adjacent ordered sample points is known frim order statistics
to be _1  (10), a straight line can be fitted to the unknown curve

ntl
and the threshold parameter cstimated,

f(t)




The area between the first and second sample points is

1
n+1

= s(yy - y1)

and the area between the second and third points is

1 _ =r(yy - yp).
n+1 3 2

The slope of the line is then

slope = M

y3 = ¥1
and at the point S
s = A + slope ZZ.%.ZL
A = s - slope Zg—i—Zl .
2
At the point ¢
0 = A+ slope (c)
A = - slope (c).
Equating equation 4 to equation 5
s - slope Zg_%_Zl = -~ slope (c)
and
c=2+71 . s
2 slope

Y2+ M1 (Y3 -V (2 -YD
' 2(2yy = vy - Y3)

48

Equation 4

Equation 5
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CHAPTER III

THE GAMMA DISTRIBUTION

In this chapter, the gamma distribution will be investigated.
The moments and the moment generating function along with the
convolution of the gamma distribution will be given and the method
of parameter estimation will be developed.

The gamma density function is given by

& _ be-l - t-c
[F=) . @
f(t) = \ : o) c <t <®
arl
G otherwise

where ¢ is the threshold valuc,
a is the scale parameter,
b is the shape paramcter. and
r(n) is the gamma function with argument n {Table 2),
The cumulative distribution is

Fity) = Pr (t < t ) = I (u,p)

where T (u,m) is the Incomplete Gamma Function Ratio and in Harter's

nctation (%)

p=>h~-1
.
A to -
I - — —
o —
Ay b-1
Toaoqpe croan ol tange found Lo e




